

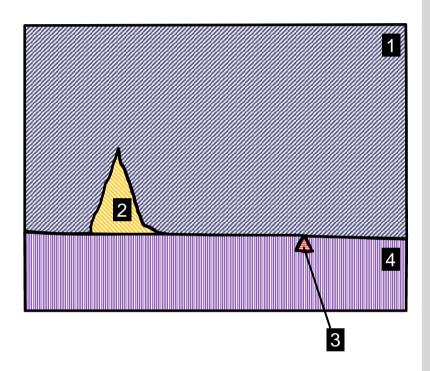
Machine Vision

Chapter 6: Segmentation

Dr. Martin Lauer Institut für Messund Regelungstechnik

Segmentation

- partitioning the image into areas of similar color
 - image driven
 - no semantics for segments
- what we need for segmentation:
 - a criterion that defines which pixels belong to a segment and which don't
 - an algorithm that efficiently subdivides pixels into segments



- criteria for segmentation:
 - predefined color criterion
 - neighborhood criterion
 - homogeneity criterion
 - connectedness criterion
 - spatial criterion
 - boundary smoothness criterion
 - size criteria

- . . .

- predefined color criterion

pixel color belongs to a predefined set of "interesting" colors

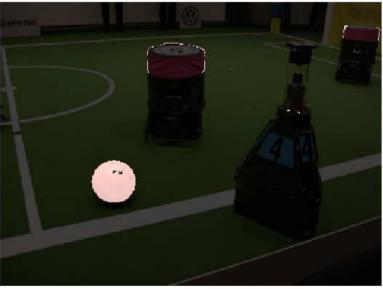
- 1. specify which color values are relevant
- 2. check which pixels are colored

example:

find the orange ball on a soccer robot field orange pixels are those with HSV values in the interval: $0^{\circ} \le H \le 24^{\circ}$, $0.4 \le S \le 1$, $0.4 \le V \le 1$

advantages and disadvantages:

- very simple, very fast
- can be applied if color of objects is known in advance and color is discriminative
- not applicable if different objects share the same colors
- finding appropriate color specification is often cumbersome



- neighborhood criterion

pixel color is similar to color of neighboring pixels

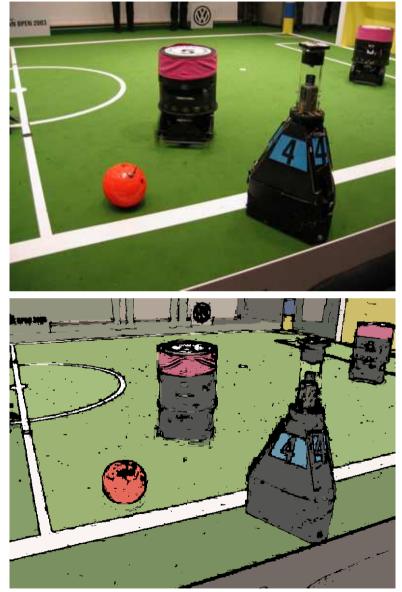
- 1. specify which colors are similar
- 2. group all pixels in one segment which have at least one similar neighbor which already belongs to the segment

example:

pixels are neighboring if Euclidean distance of RGB triplets is less than 7/255

advantages and disadvantages:

- simple
- objects colors don't need to be known
- object boundaries must be high-contrast, the inside must be low-contrast
- blurry images might lead to undersegmentation, noisy images to oversegmentation



- homogeneity criterion

pixel color is similar to the average color of a segment

- 1. specify how to compute the average color and decide whether two colors are similar
- 2. group all pixels in one segment which are similar to the average color of a segment

example:

pixels that are similar to the average ball color

advantages and disadvantages:

- objects colors don't need to be known
- objects must have similar color in all parts
- does not support low frequent color changes
- recurrent definition

- connectedness criterion

all pixels in the same segment must be connected, i.e. between two pixels of the segment there is a path which does not leave the segment

example

advantages and disadvantages:

· criterion is combined with other criteria

same color, but different segments

- spatial criterion

pixels which are surrounded by pixels of another segment should belong to that segment

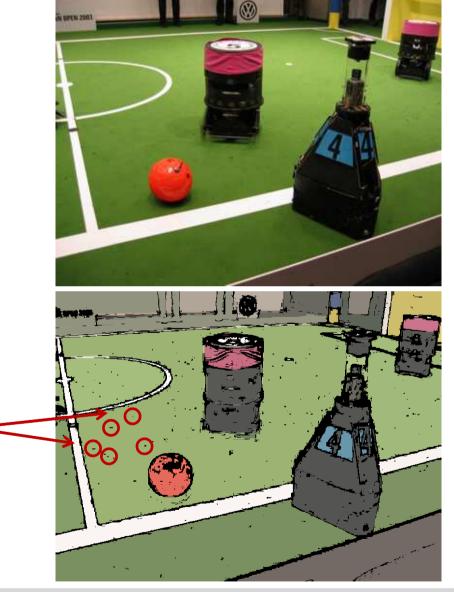
example

advantages and disadvantages:

· criterion is combined with other criteria

avoid/fill these gaps

• improves robustness w.r.t. noise



boundary smoothness criterion

the boundary of segments should be smooth, not ragged.

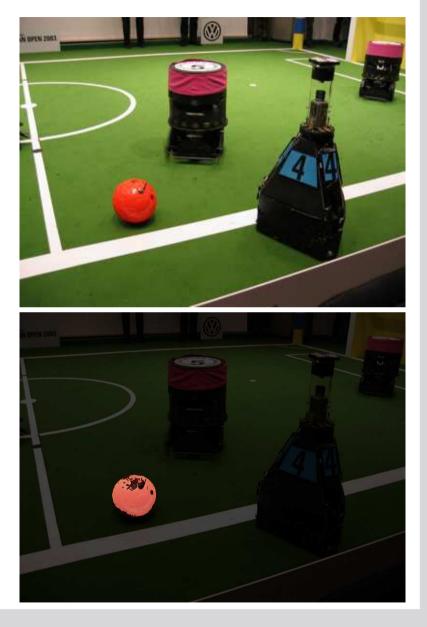
example

advantages and disadvantages:

- · criterion is combined with other criteria
- improves robustness w.r.t. noise

ragged boundary - bad

smooth boundary – better



- size criteria

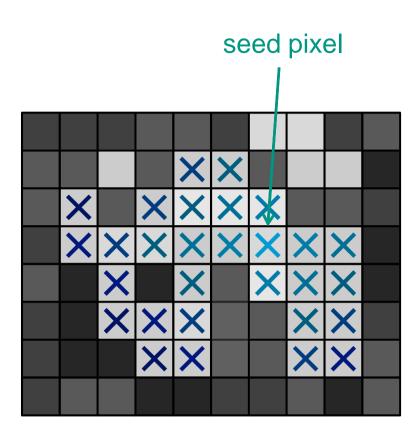
the size of a segment should be within a range/not too small/not too large

Segmentation Algorithms

- basic segmentation algorithms:
 - region growing
 - connected components labeling
 - k-means and mean-shift algorithm
 - morphological operations
- more elaborated algorithms:
 - level set methods
 - random fields

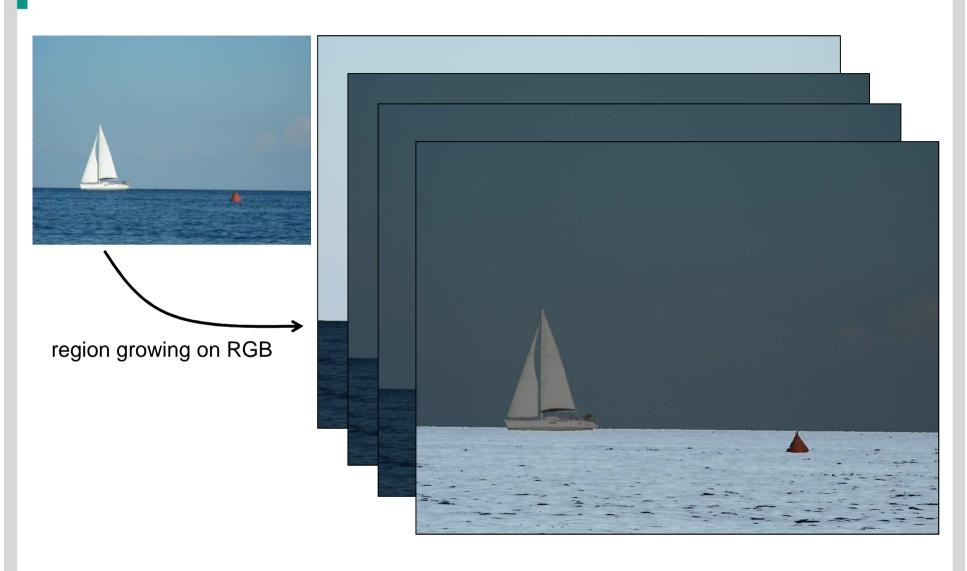
Region Growing

- key idea:
 - start from one/more seed points (seed points must be provided)
 - incrementally expand segment until any pixel can be added
 - implements connectedness criterion + homogeneity or neighborhood criterion
 - yields single segment
- advantages and disadvantages:
 - easy to implement (breadth-first-search)
 - requires one or more seed points

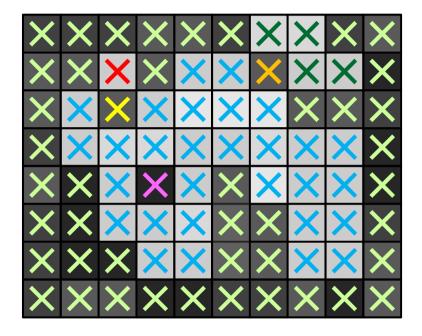


no more extension possible

Region Growing cont.

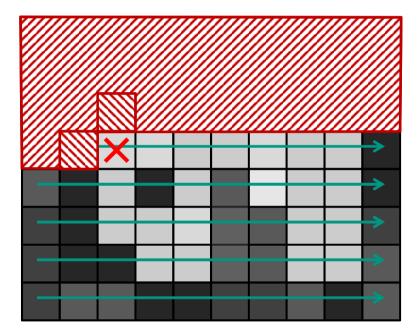


- key idea:
 - create a full segmentation of the image
 - implements connectedness criterion + neighborhood criterion
 - assign each pixel to segment only by determining similarity with two neighboring pixels

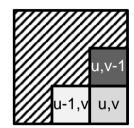


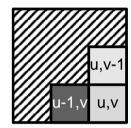
– procedure:

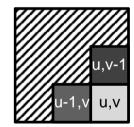
- we visit pixels row-by-row from the left upper corner to the right lower corner and immediately assign them to a segment
- when we visit a pixel (u,v) we already visited (u-1,v) and (u,v-1)
- we compare color(u,v) with color(u-1,v), color(u,v-1). Five cases

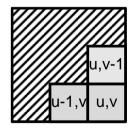


- pixel colors at (u,v) and (u-1,v) are similar pixel colors at (u,v) and (u,v-1) are dissimilar
 - \rightarrow pixel (u,v) and (u-1,v) belong to the same segment
 - \rightarrow we assign pixel (u,v) to the segment of pixel (u-1,v)
- 2. pixel colors at (u,v) and (u-1,v) are dissimilar pixel colors at (u,v) and (u,v-1) are similar
 - \rightarrow pixel (u,v) and (u,v-1) belong to the same segment
 - \rightarrow we assign pixel (u,v) to the segment of pixel (u,v-1)
- 3. pixel colors at (u,v) and (u-1,v) are dissimilar pixel colors at (u,v) and (u,v-1) are dissimilar
 - \rightarrow why should pixel (u,v) belong to the segments of (u-1,v) or (u,v-1)?
 - \rightarrow we create a new segment and assign pixel (u,v) to it
- pixel colors at (u,v) and (u-1,v) are similar
 pixel colors at (u,v) and (u,v-1) are similar
 pixels (u-1,v) and (u,v-1) belong to the same segment
 - \rightarrow pixel (u,v) also belongs to that segment
 - \rightarrow we assign pixel (u,v) to that segment

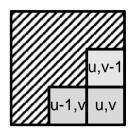




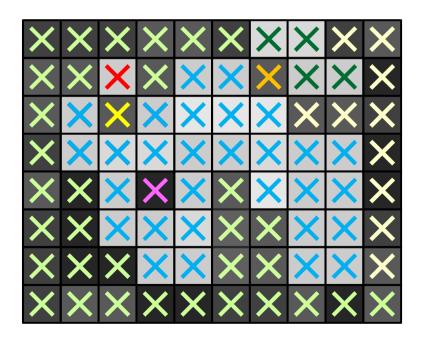


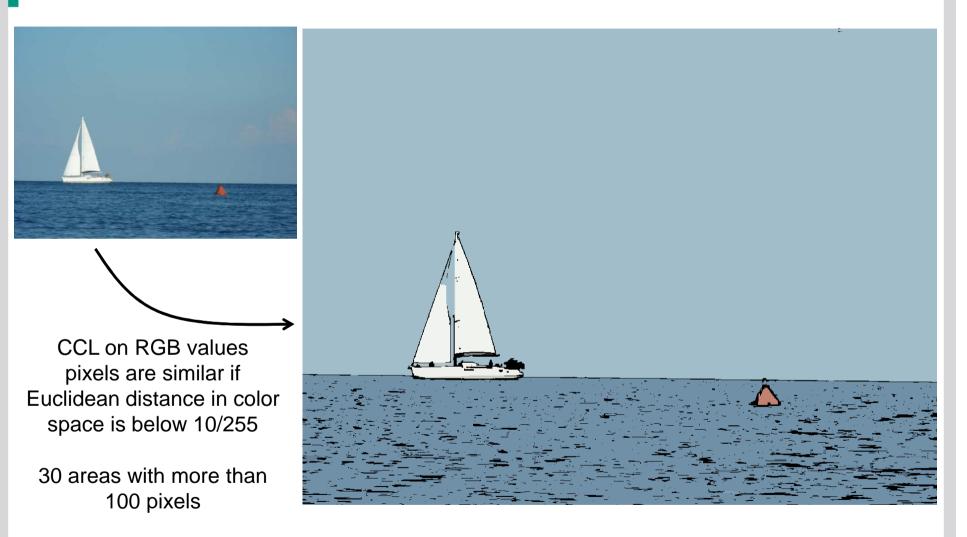


- pixel colors at (u,v) and (u-1,v) are similar
 pixel colors at (u,v) and (u,v-1) are similar
 pixels (u-1,v) and (u,v-1) do not belong to the same segment
 - \rightarrow pixel (u,v) belongs to the segments of both neighbors

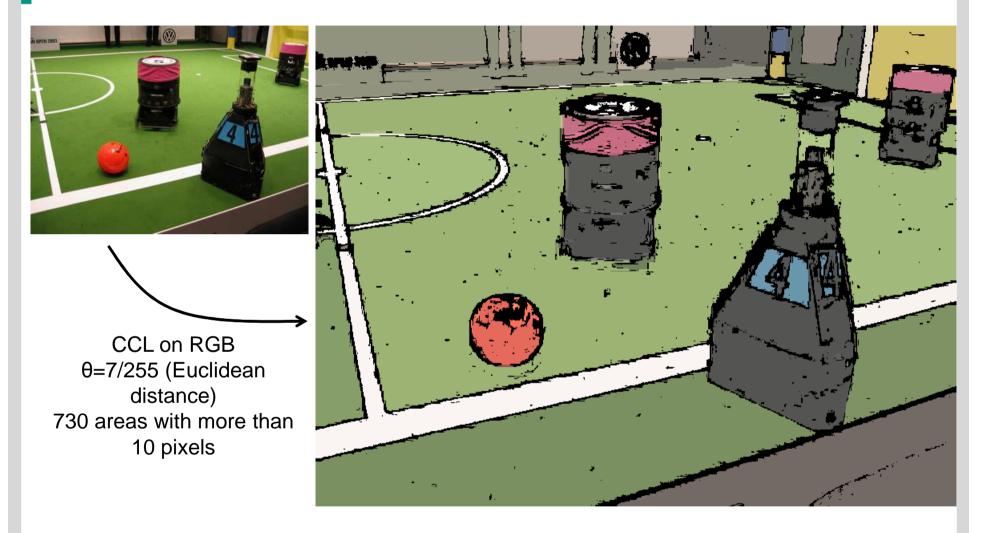


- \rightarrow we merge the two neighboring segments and assign pixel (u,v) to the merged segment
- Example





CCL on RGB θ=2/255 (Euclidean distance) 2418 areas with more than 10 pixels



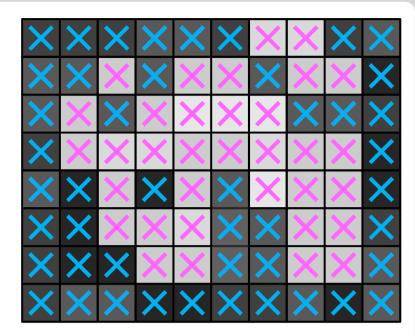
– key idea:

- image is composed out of areas of similar color
- find clusters of color
- assign each pixel to its color cluster
- implements homogeneity criterion
- creates full segmentation

color clusters in the robot soccer picture:

- green
- white
- orange
- black
- magenta
- blue
- yellow
- gray

- how can we find color clusters?
- if we know the number of clusters
 - \rightarrow k-means algorithm
 - 1. initialize *k* prototype colors $c_1, c_2, ..., c_k$ randomly (e.g. by randomly picking pixels from image)
 - 2. assign each pixel to the prototype color that is most similar
 - 3. recalculate prototype colors by averaging over colors of pixel which have been assigned in step 2
 - repeat steps 2 and 3 until convergence (i.e. the assignments in step 2 do not change any more)



example: *k*=2 step 1: randomly pick colors from two pixels step 2: assign pixels to most similar cluster step 3: recalculate prototype colors step 2: reassign pixels step 3: recalculate prototype colors step 2: reassign pixels → convergence

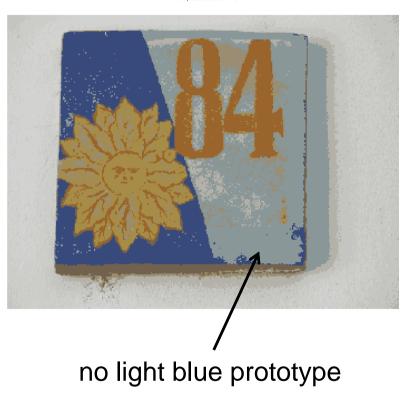
• Examples:

original image

k=5, iteration=10

• Examples:

k=10, iteration=10



• Examples:

k=10, iteration=10

suboptimal prototype colors: only one prototype for yellow+orange

Lecture in Machine Vision - 26

original image

Mean-Shift

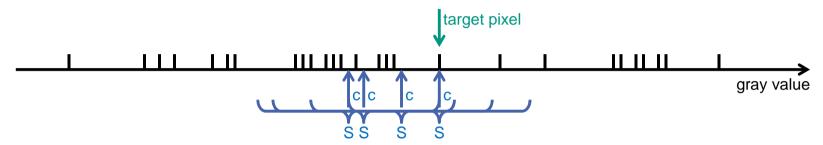
- k-means algorithm

- advantage:
 - simple, easy to implement
- disadvantages:
 - number of clusters (k) must be known
 - often converges into suboptimal clustering (depending on initial prototype colors)
- improvement for unknown number of clusters \rightarrow mean-shift
 - requires a similarity measure for colors
 - · for each pixel proceed as follows
 - 1. determine color *c* of this pixel
 - 2. find the set *S* of all pixels which are similar to *c*
 - 3. calculate the average color of *S* and assign it to *c*
 - 4. repeat steps 2 and 3 until convergence (i.e. until S remains unchanged in step 2)
 - 5. finally, c is the prototype color of the segment which the pixel belongs to

Mean-shift

- example

arranged all pixel colors (gray values) along one axis



step 1: pick color of target pixel *c*

step 2: find the set of similar pixels S

step 3: calculate average color of S and assign it to c

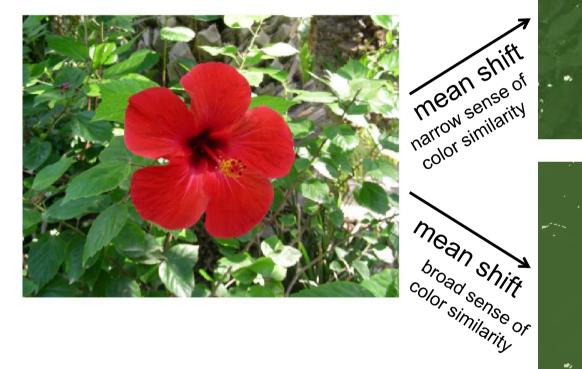
step 2: recalculate S

step 3: recalculate average color of S and assign it to c

- step 2: recalculate S
- step 3: recalculate average color of S and assign it to c
- step 2: recalculate $S \rightarrow$ convergence

Mean-shift

• Examples:

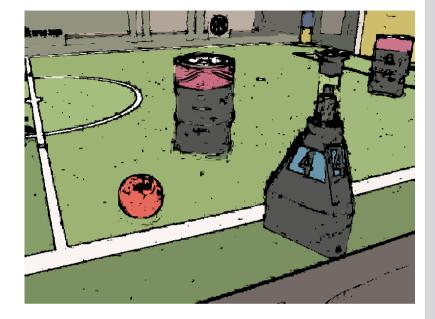


Morphological Operations

- problems:
 - holes
 - ragged contours
 - -gaps
 - tiny areas
- extend/shrink areas
 - erosion: shrink area by one pixel
 - dilation: extend area by one pixel

assumption

- background pixels are encoded with 0
- foreground pixels are encoded with numbers ≥1



• Erosion:

 $erode\{g\}(u,v) = \min\{g(u,v),$

$$g(u+1,v), g(u+1,v+1),$$

$$g(u,v+1), g(u-1,v+1),$$

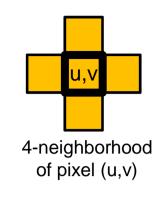
$$g(u-1,v), g(u-1,v-1),$$

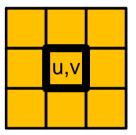
$$g(u,v-1), g(u+1,v-1)\}$$

• Dilation:

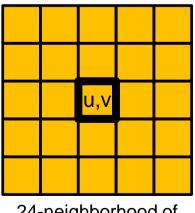
 $dilate\{g\}(u,v) = \max\{g(u,v), \\g(u+1,v), g(u+1,v+1), \\g(u,v+1), g(u-1,v+1), \\g(u-1,v), g(u-1,v-1), \\g(u,v-1), g(u+1,v-1)\}$

"take the maximal value of neighbors"

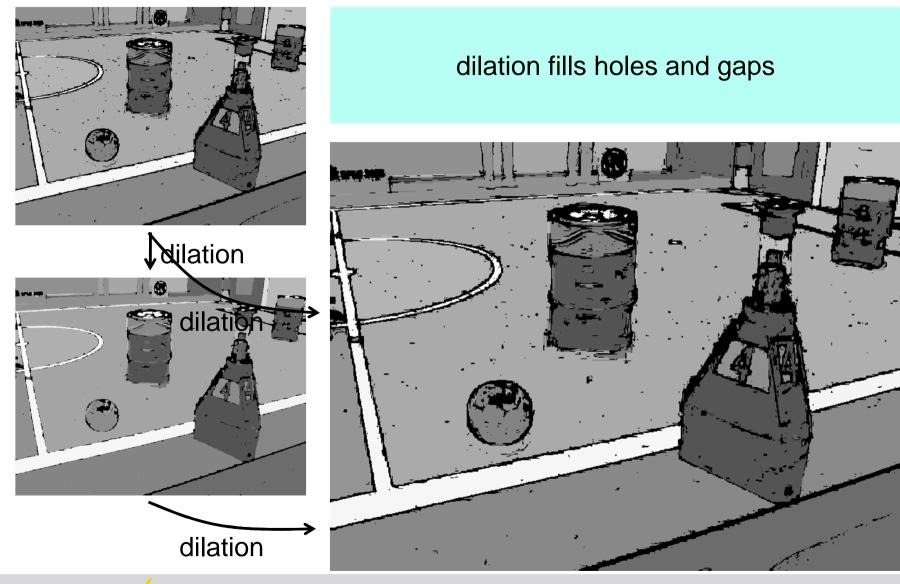


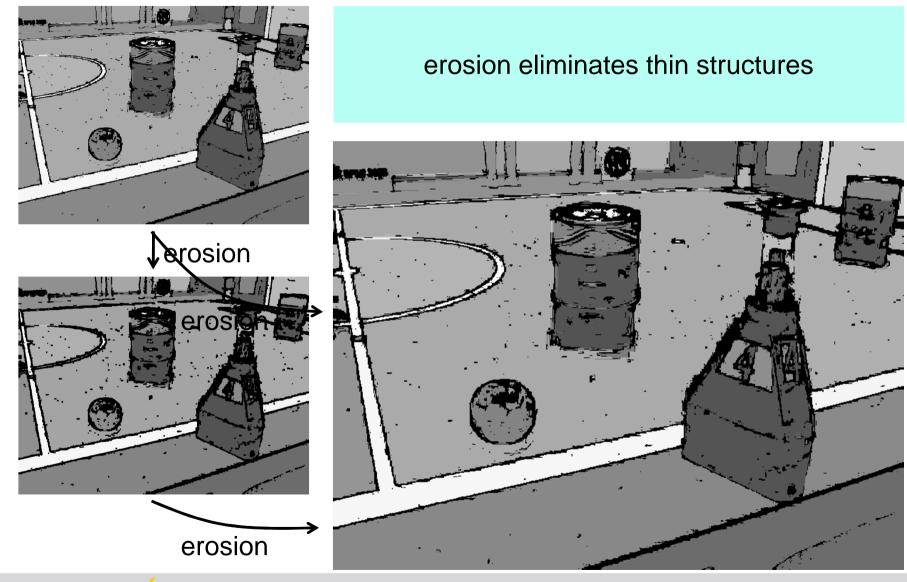


8-neighborhood of pixel (u,v)



24-neighborhood of pixel (u,v)



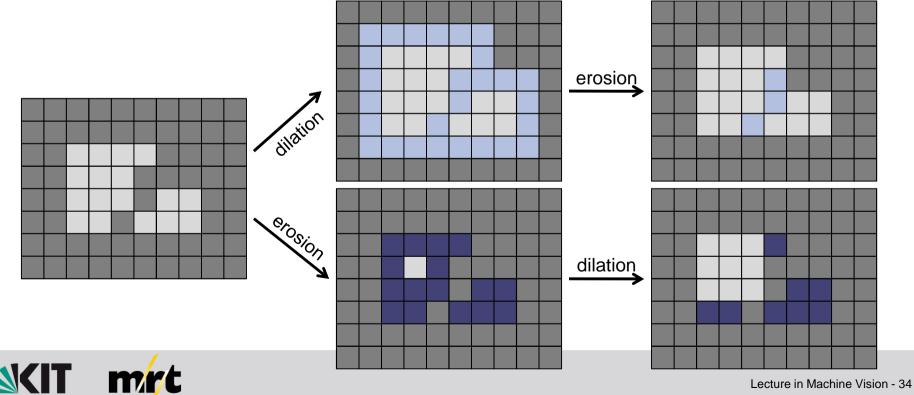


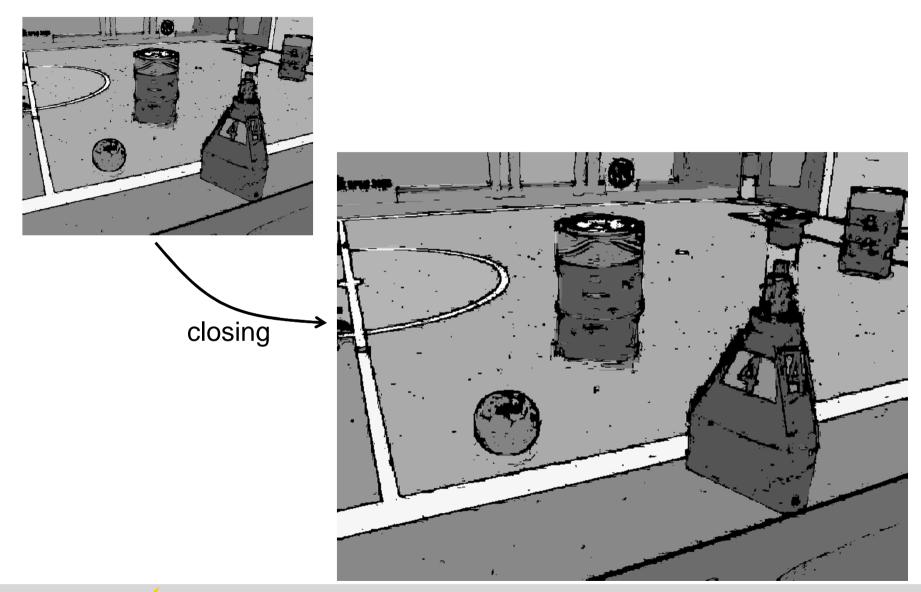
- erosion and dilation can be combined:
 - closing: first dilation, then erosion

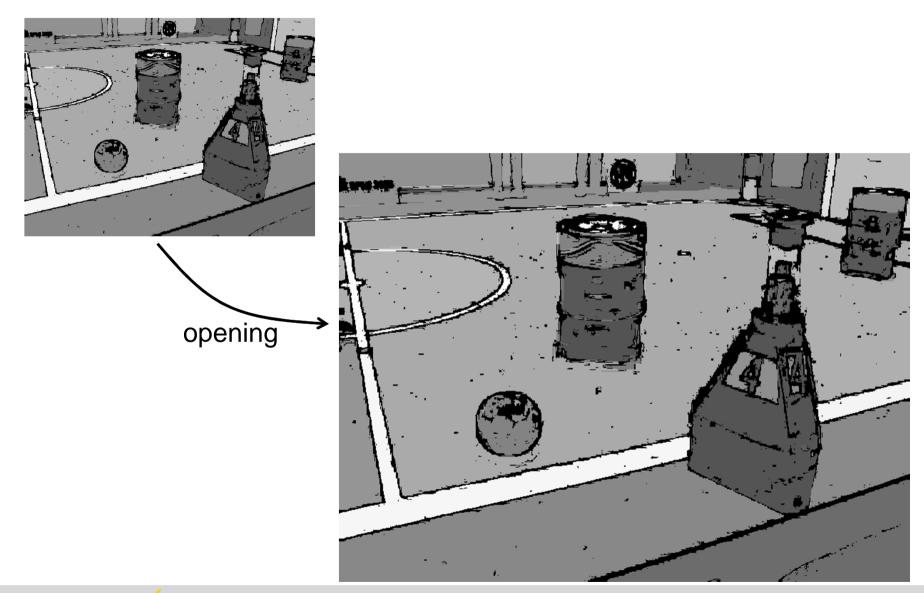
fill gaps and holes without changing the overall extension of areas

- opening: first erosion, then dilation

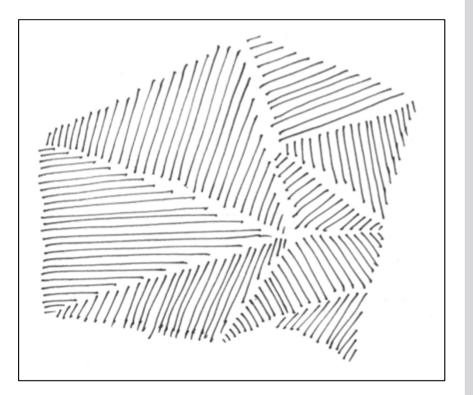
remove thin areas without changing the overall extension of large areas







- So far:
 - segmentation was based on color (gray values)
 - different representation of color and different similarity measures
- Question:
 - how can we segment images in which colors are not salient?
- Example:
 - segment image into areas of same hatching



- What do we need for image segmentation?
 - for every pixel: a description of the pixel (image features)
 - e.g. color
 - e.g. texture information
 - e.g. depth of point (3d scanner/stereo vision)
 - e.g. motion of pixel (optical flow)
 - e.g. features which characterize whether pixel belongs to certain object categories
 - e.g. a combination of those features
 - a measure of similarity of different pixels
 - e.g. Euclidean distance between feature vectors
 - e.g. other metric
 - one/more segmentation criteria
 - \rightarrow cf. slide 3
 - an efficient algorithm that implements the segmentation criteria
 - \rightarrow cf. methods presented on previous slides

- Example:
 - segment image into areas of same hatching
 - image features:
 - color and gray level is not salient
 - · orientation of lines is salient
 - e.g.
 - calculate gray level gradient
 - determine the dominant gradient direction in local environment around pixel
 - represent direction as 2d vector
 - length of vector is proportional to average gradient length
 - criteria and algorithm:
 - neighborhood criterion
 - minimal segment size
 - · connected components labeling

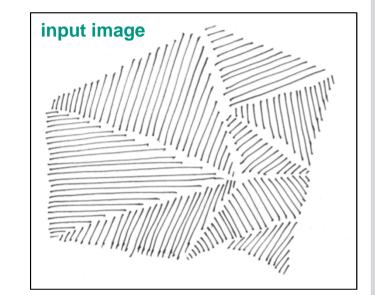
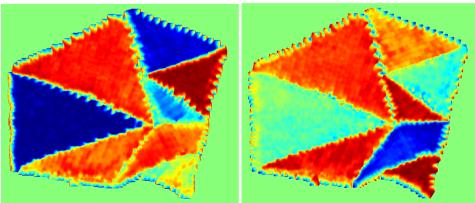
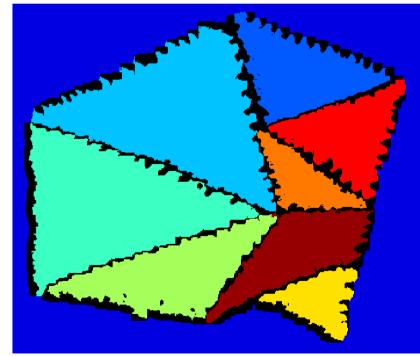


image features (illustrated as color images)



- Example:
 - segment image into areas of same hatching

segmentation result with CCL (one color per segment)



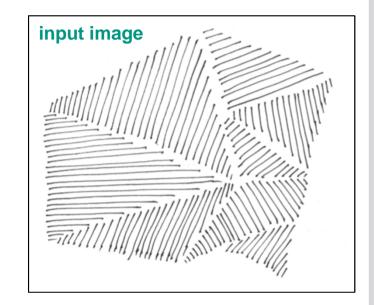
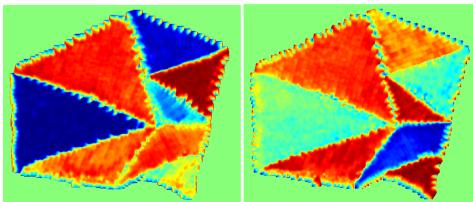


image features (illustrated as color images)

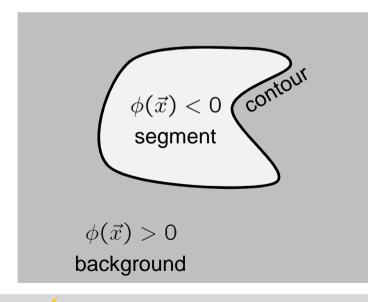


LEVEL SET METHODS

Level Set Representation

- two-class-segmentation can be represented by:
 - collection of all pixels that belong to segment
 - indicator function $\phi(\vec{x}) \begin{cases} < 0 & \text{if pixel } \vec{x} \text{ belongs to segment} \\ > 0 & \text{if pixel } \vec{x} \text{ belongs to background} \end{cases}$
 - contour

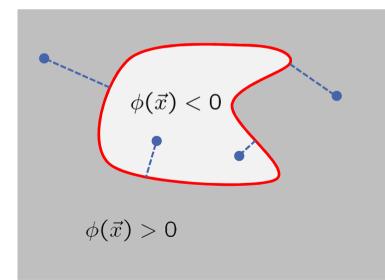
- signed distance function



Level Set Representation cont.

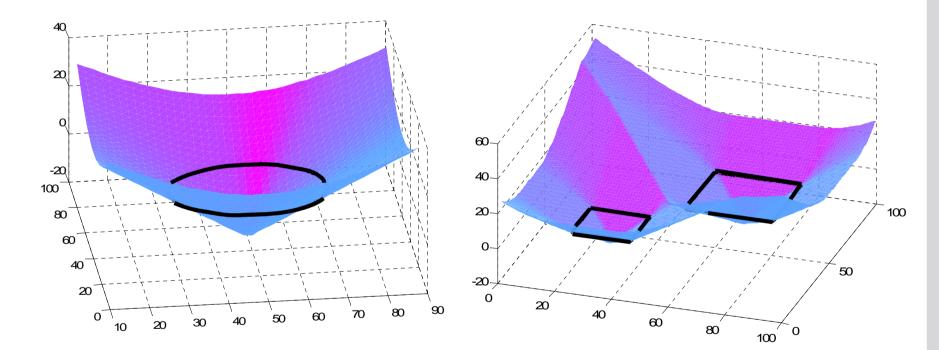
- signed distance function
 - $\phi(\vec{x}) \begin{cases} < 0 & \text{if pixel } \vec{x} \text{ belongs to segment} \\ > 0 & \text{if pixel } \vec{x} \text{ belongs to background} \\ |\phi(\vec{x})| = \text{ distance of } \vec{x} \text{ from contour} \end{cases}$
- contourpoints:

 $\phi(\vec{x}) = 0$



Level Set Representation cont.

- signed distance function



example: circlular contour

example: two rectangular contours

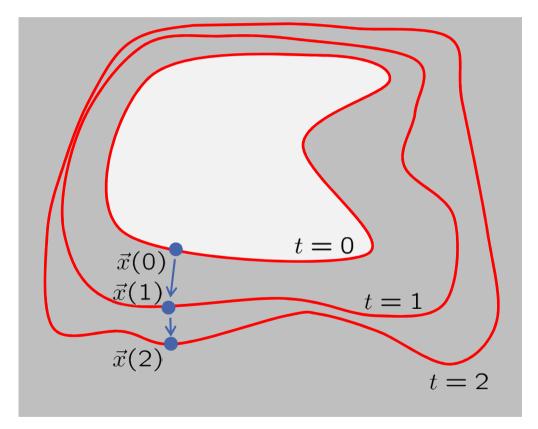
Level Set Evolution

- modeling temporal evolution of signed distance function $\phi(\vec{x},t)$
 - tracking a point on the boundary over time $\vec{x}(t)$

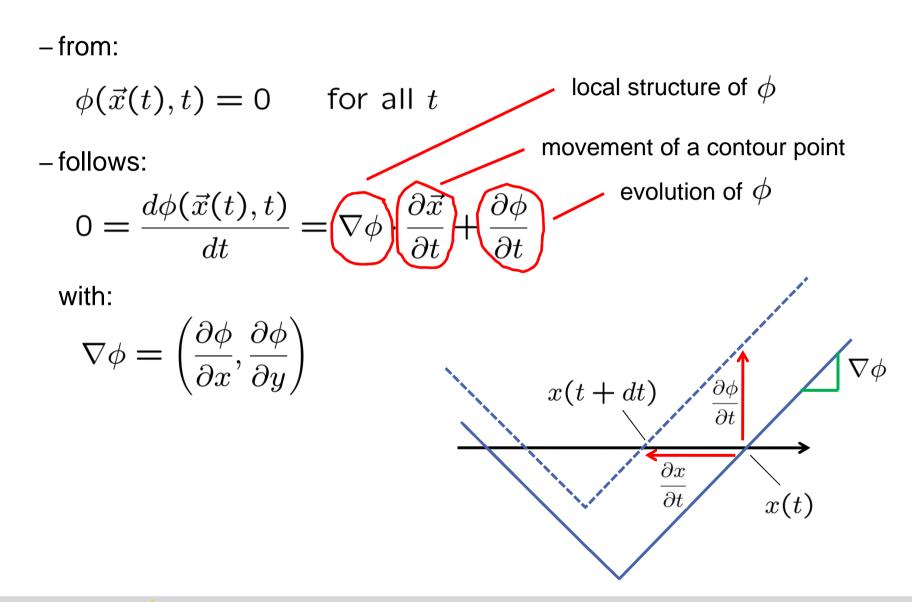
```
-obviously:

\phi(\vec{x}(t), t) = 0

for all t
```



Level Set Evolution cont.



Level Set Evolution cont.

- resolving w.r.t.
$$\frac{\partial \phi}{\partial t}$$
:
 $\frac{\partial \phi}{\partial t} = -\nabla \phi \cdot \frac{\partial \vec{x}}{\partial t}$

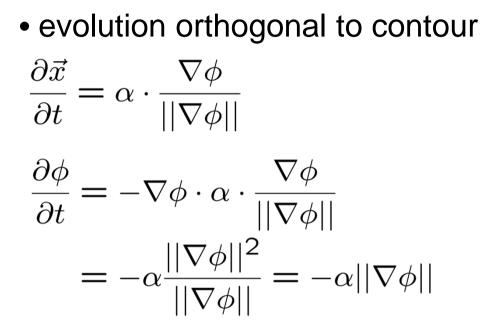
- Basic idea of level set methods:
 - start with initial $\phi(\cdot, 0)$

– assume reasonable $\frac{\partial \vec{x}}{\partial t}$

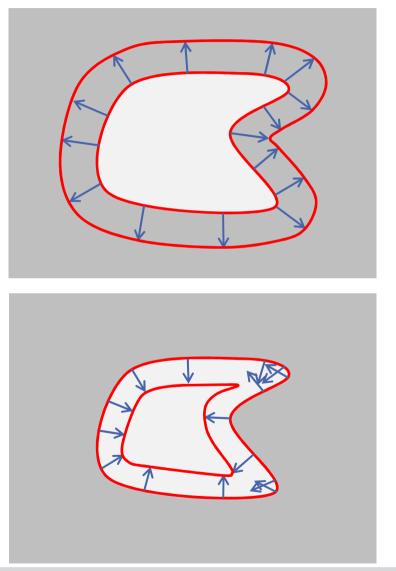
 $-\operatorname{track} \phi(\cdot,t)$ over time

• Implementation using numerical integration, e.g. Euler's approach (tricky!)

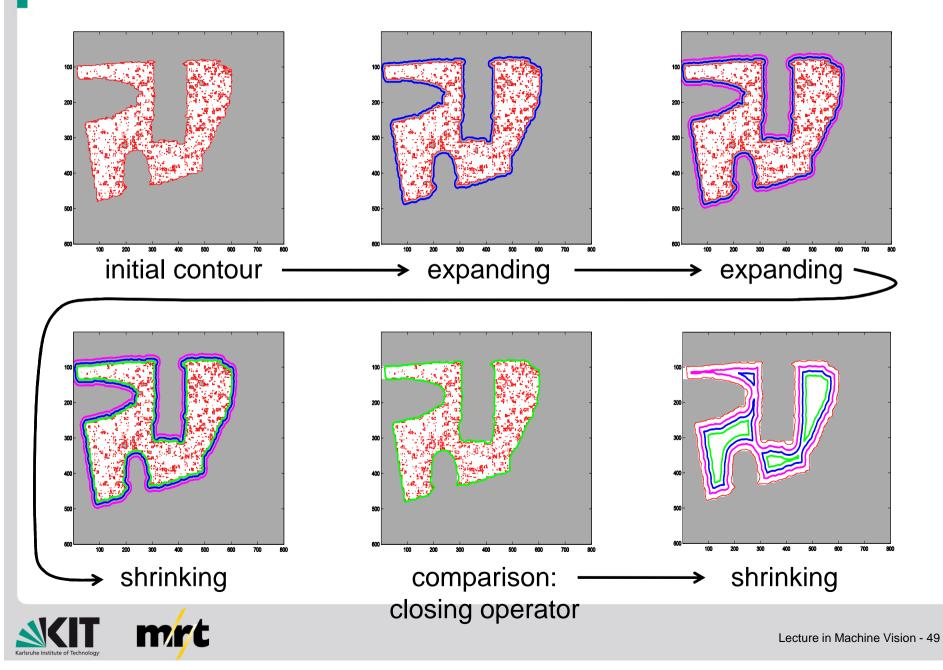
Expanding and Shrinking



- -1. case $\alpha > 0$ contour expands
- -2. case $\alpha < 0$ contour shrinks



Expanding and Shrinking cont.

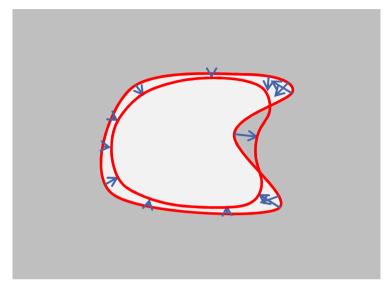


Expanding and Shrinking cont.

- level set evolution can be used to implement morphological operators:
 - dilation = expanding
 - erosion = shrinking
 - closing = shrinking after expanding
 - opening = expanding after shrinking

Contour Rectification

- making the contour smoother
 - expanding in concave areas
 - shrinking in convex areas
- evolving the level set
 - orthogonal to contour
 - -depending on local curvature κ



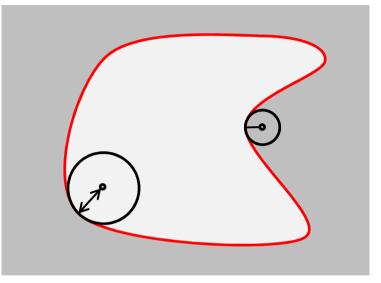
Contour Rectification cont.

- \bullet curvature ${\cal K}$
 - in convex areas $\kappa = 1/r$ of circle that locally approximates contour
 - in concave areas: $\kappa = -1/r$ of circle that locally approximates contour

– in general:
$$\kappa =
abla \left(rac{
abla \phi}{||
abla \phi||}
ight)$$

• level set update:

$$\begin{aligned} \frac{\partial \vec{x}}{\partial t} &= -\beta \kappa \frac{\nabla \phi}{||\nabla \phi||} \\ \frac{\partial \phi}{\partial t} &= \beta \kappa ||\nabla \phi|| \end{aligned}$$



Contour Rectification cont.

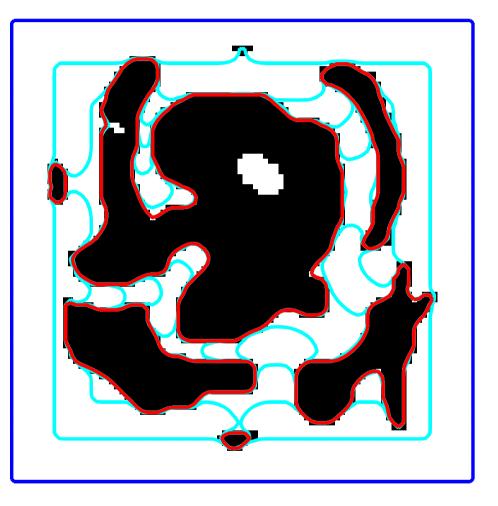
• Example:

- very simple idea for black/white images:
 - start with a very large contour
 - shrink contour at white pixels
 - don't shrink at black pixels
 - \rightarrow contour enwraps black areas

$$\frac{\partial \vec{x}}{\partial t} = \begin{cases} \gamma \cdot \frac{\nabla \phi}{||\nabla \phi|} \\ 0 \end{cases}$$

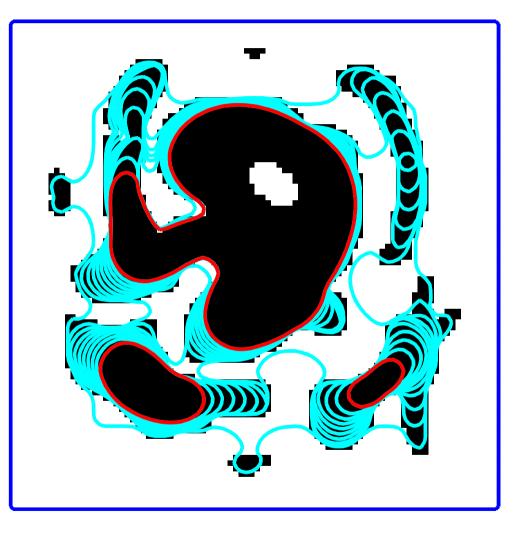
if white pixel if black pixel

• Example:



• Example:

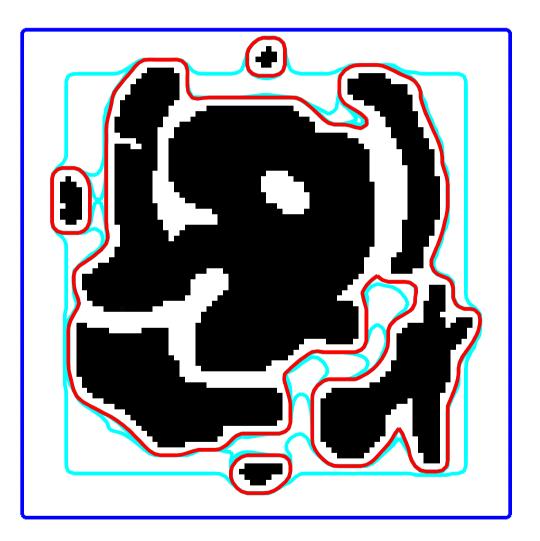
combining segmentation with contour rectification



- gradient based approach for image segmentation:
 - start with a very large contour
 - shrink contour at pixels with small gradient length
 - don't shrink at pixels with large gradient length (edge pixels)
 - \rightarrow contour enwraps areas bordered by edges

$$\begin{split} \frac{\partial \vec{x}}{\partial t} &= -\epsilon(g) \cdot \frac{\nabla \phi}{||\nabla \phi||} \\ \epsilon(g) &= \frac{\gamma}{\gamma + |Gauss * \nabla g|^p} \\ \text{with appropriate } \gamma > 0, p \geq 1 \\ g \text{ denotes gray level image} \end{split}$$

• Example:

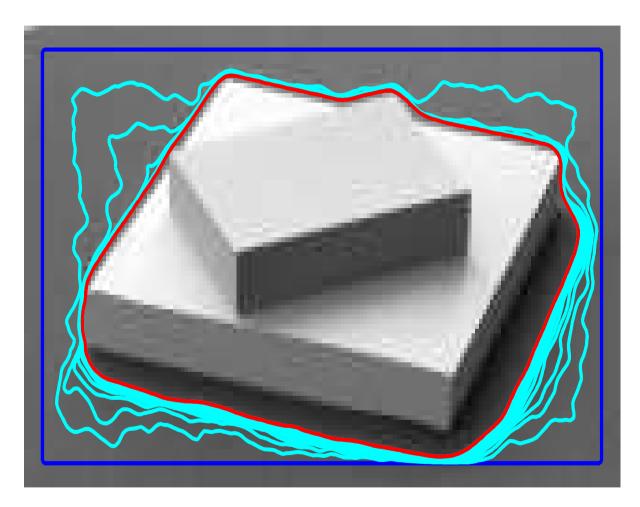


• Example:

• Example:

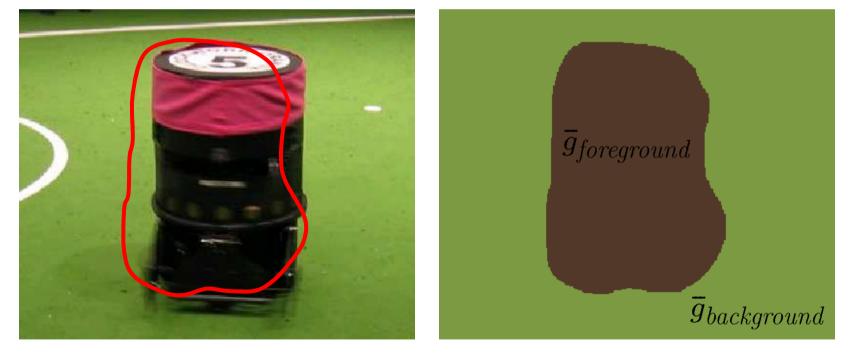
same as before, but with contour rectification

• Example:



- Mumford-Shah based segmentation
 - idea: pixels should be assigned to the segment with the most similar grey values (color values)

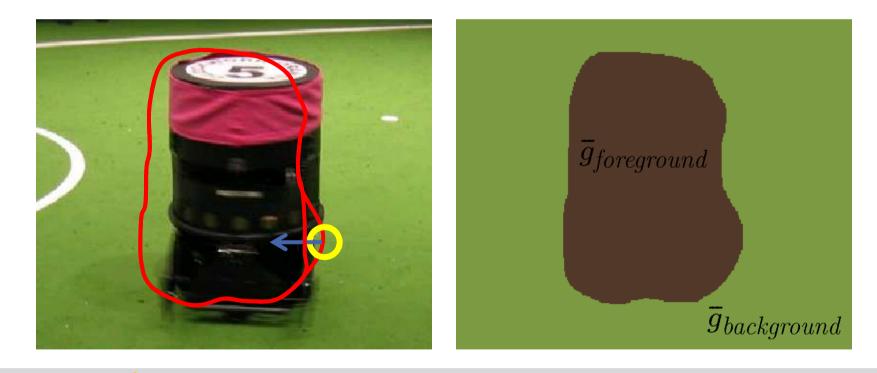
 $\overline{g}_{foreground}$: average grey value (color) of pixels in foreground segment $\overline{g}_{background}$: average grey value (color) of pixels in background segment



- check for pixels on boundary with grey (color) value I
 - pixel more similar to area outside

$$(g - \bar{g}_{foreground})^2 > (g - \bar{g}_{background})^2$$

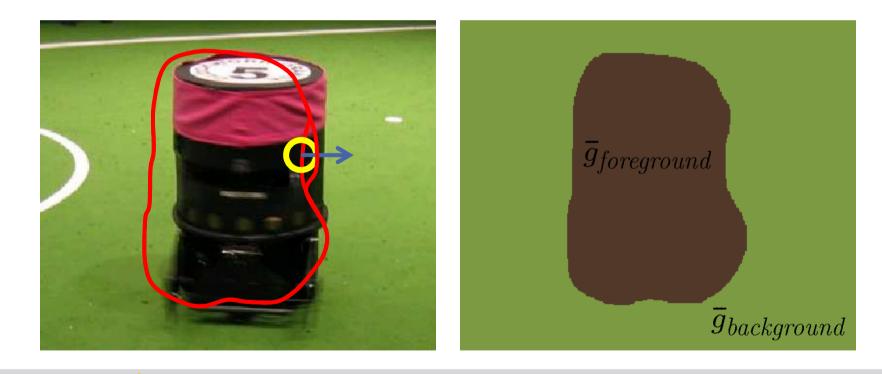
 \rightarrow shrink contour

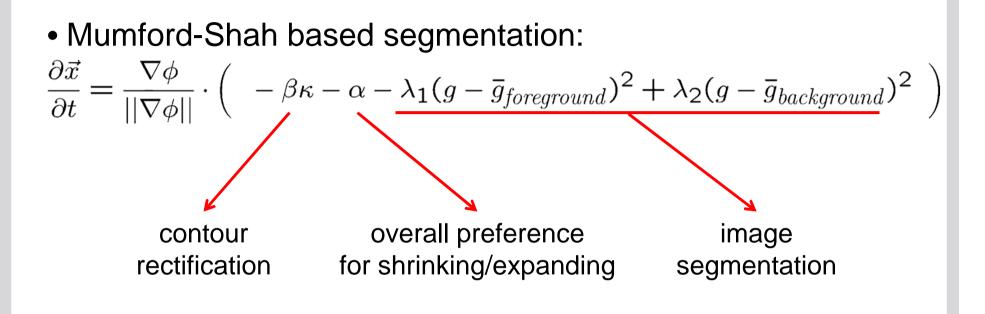


- check for pixels on boundary with grey (color) value I
 - pixel more similar to area inside

$$(g - \bar{g}_{foreground})^2 < (g - \bar{g}_{background})^2$$

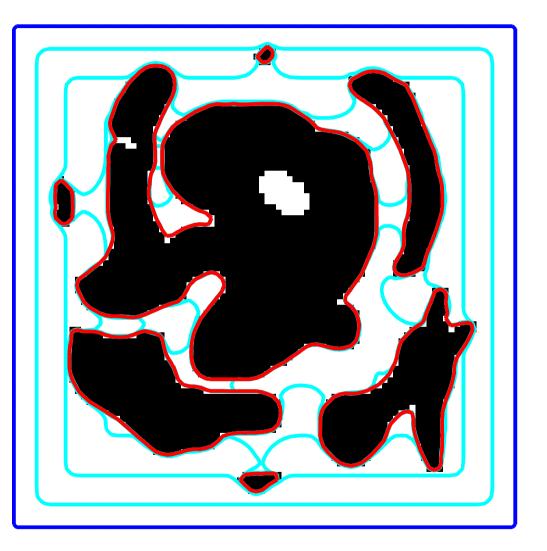
 \rightarrow expand contour





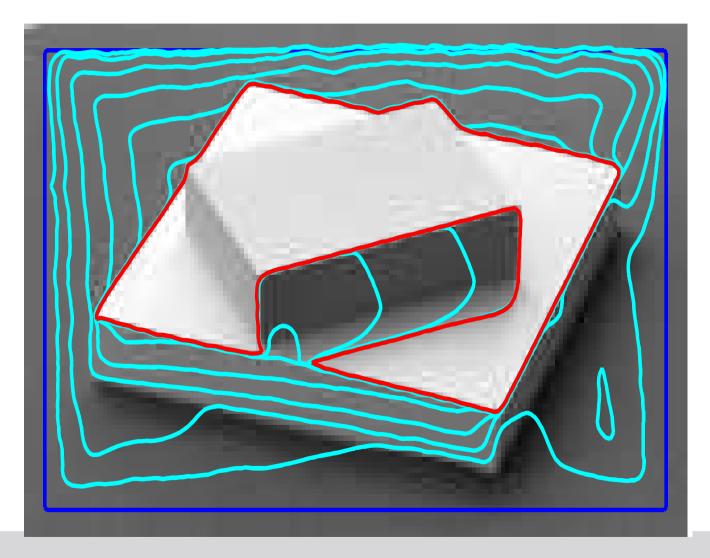
– $\alpha, \beta, \lambda_1, \lambda_2$ can be used to tune approach

• Example:



• Example:

• Example:



RANDOM FIELDS

Random Fields

l(u, v)

- the segment label of each pixel is seen as a variable
- the feature vector of a pixel is related to its label

feature vector, known

label induces feature, feature allows conclusions about label

• feature vectors of pixels are also seen as variables, however, its value is observed

label is a priori unknown

label at pixel position, i.e. the number of the segment

• the relationship is modeled by potential functions

u, v

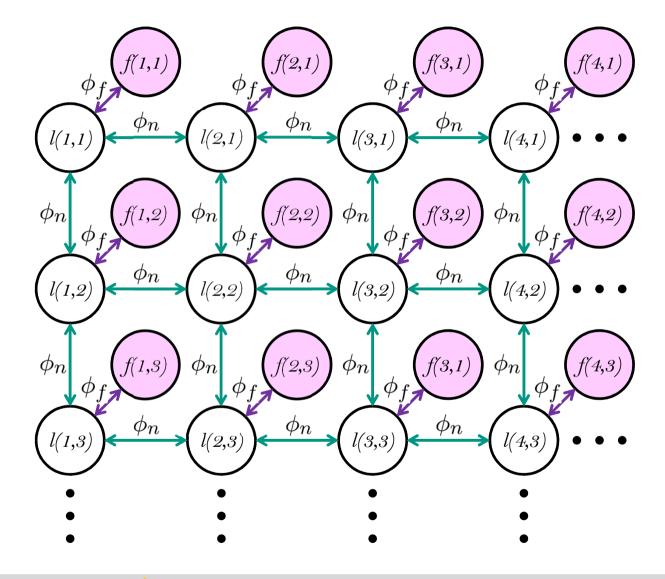
$$\phi_f(l(u,v), f(u,v)) \begin{cases} \text{is small} & \text{if } f(u,v) \text{ supports label } l(u,v) \\ \text{is large} & \text{if } f(u,v) \text{ does not support label } l(u,v) \end{cases}$$

Random Fields

- -labels of neighboring pixels are also related $l(u, v) \iff l(u + 1, v)$ $l(u, v) \iff l(u, v + 1)$
 - the relationship is again modeled by potential functions $\phi_n(l(u,v), l(u+1,v))$ $\phi_n(l(u,v), l(u,v+1))$

$$\phi_n(l(u,v), l(u+1,v)) \begin{cases} \text{is small} \\ \text{if } l(u,v) \text{ and } l(u+1,v) \text{ are similar} \\ \text{is large} \\ \text{if } l(u,v) \text{ and } l(u+1,v) \text{ are dissimilar} \end{cases}$$

Random Fields



• Goal:

– find labels l(u,v) so that the potential functions are minimized

$$\begin{array}{ll} \begin{array}{ll} \textit{minimize} & \alpha_f \cdot \sum_{u,v} \phi_f(l(u,v), f(u,v)) \\ & + \alpha_n \cdot \sum_{u,v} \phi_n(l(u,v), l(u+1,v)) \\ & + \alpha_n \cdot \sum_{u,v} \phi_n(l(u,v), l(u,v+1)) \end{array}$$

- with weighting factors $\alpha_f, \alpha_n > 0$
- solution of optimization problem
 - exact \rightarrow hard (in general, exceptions exist)
 - approximative

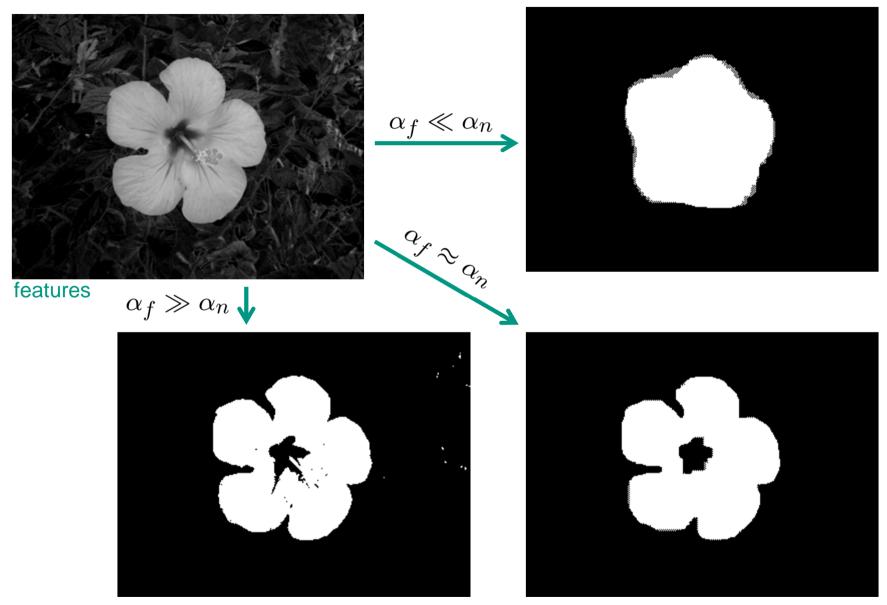
- Example:
 - extract bright foreground object from dark background
 - *l=0* background
 - *l*=1 foreground
 - f gray value $0 \le f \le 255$

$$\phi_f(l, f) = (l - \frac{1}{255}f)^2$$

 $\phi_n(l, l') = (l - l')^2$

implements segmentation criteria:

- predefined color criterion
- spatial criterion



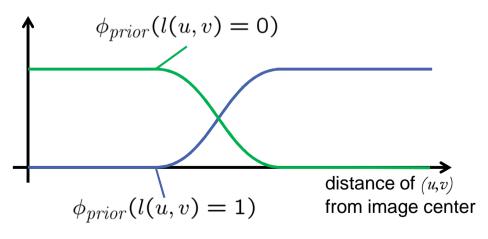
- Advantage of random field modeling:
 - segmentation problem is formulated as optimization problem
 - potential functions allow to model many segmentation criteria, e.g.
 - seed points

keep label function constant for seed points

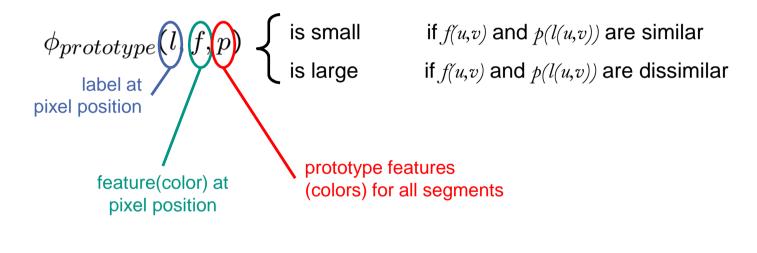
• general preferences for certain segment labels (a priori)

ightarrow add unary potential function $\phi_{prior}(l)$

e.g. to specify that the foreground object is expected to be in the center of the image



- prototype segment color. Pixels should be assigned to segment with most similar prototype feature
 - \rightarrow add prototype variables to random field, one for each segment
 - \rightarrow add potential functions that model similarity of prototype feature and pixel feature f



implements homogeneity criterion

- Example:
 - subdivide foreground and background assuming that
 - foreground object is located in the center of the image
 - · foreground object and background object have distinctive colors
 - uses pixel colors (e.g. in RGB) as features

$$\phi_{prior}(l(u,v)) = \begin{cases} \max\left\{\frac{|2u-width|}{width}, \frac{|2v-height|}{height}\right\} & \text{if } l(u,v) = 1\\ 1 - \max\left\{\frac{|2u-width|}{width}, \frac{|2v-height|}{height}\right\} & \text{if } l(u,v) = 0 \end{cases}$$

$$\phi_{prototype}(l,f,p) = ||f-p(l)||^2$$

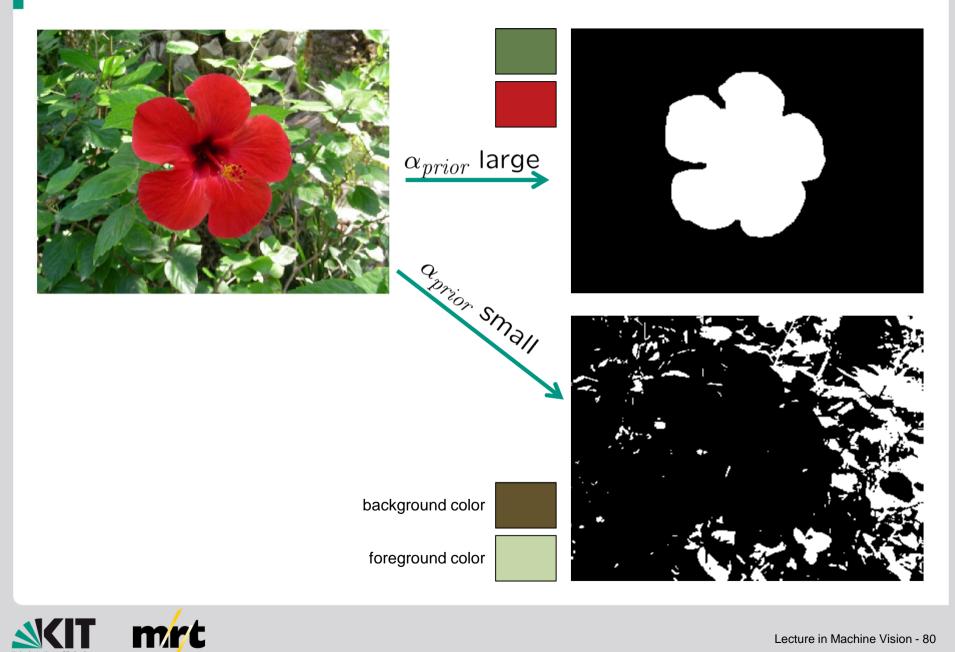
$$\phi_n(l,l') = (l-l')^2$$

$$\phi_{prior}(l(u,v)) = \begin{cases} \max\left\{\frac{|2u-width|}{width}, \frac{|2v-height|}{height}\right\} & \text{if } l(u,v) = 1\\ 1 - \max\left\{\frac{|2u-width|}{width}, \frac{|2v-height|}{height}\right\} & \text{if } l(u,v) = 0 \end{cases}$$

$$\phi_{prototype}(l,f,p) = ||f-p(l)||^2$$

$$\phi_n(l,l') = (l-l')^2$$

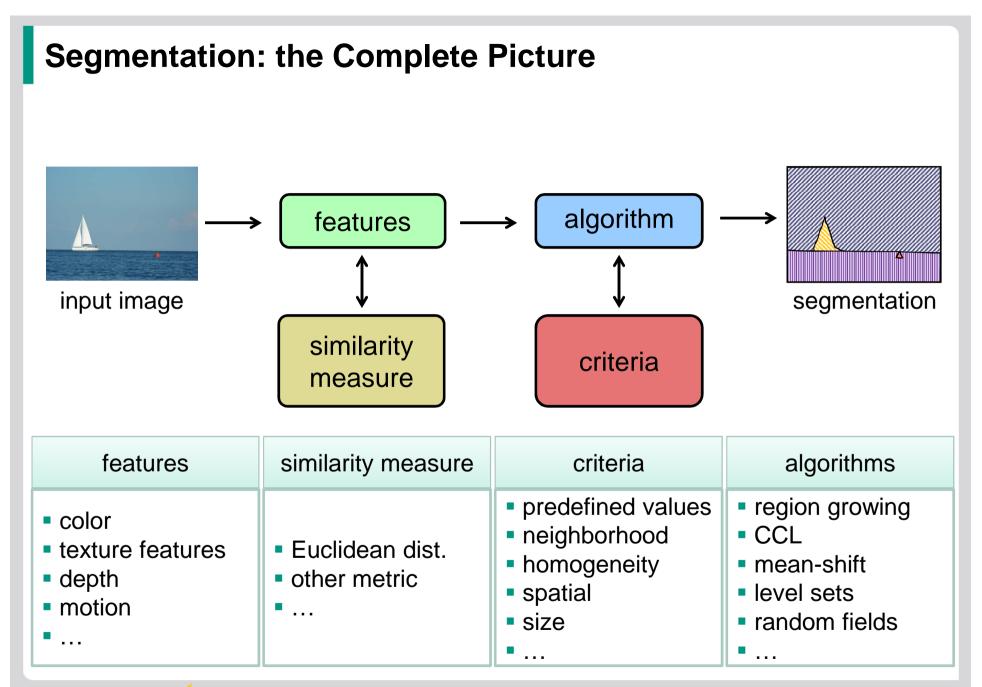
$$\begin{array}{ll} \begin{array}{l} \mbox{minimize} & \alpha_{prior} \cdot \sum_{u,v} \phi_{prior}(l(u,v)) \\ & + \alpha_f \cdot \sum_{u,v} \phi_{prototype}(l(u,v), f(u,v), p) \\ & + \alpha_n \cdot \sum_{u,v} \phi_n(l(u,v), l(u+1,v)) \\ & + \alpha_n \cdot \sum_{u,v} \phi_n(l(u,v), l(u,v+1)) \end{array} \end{array}$$

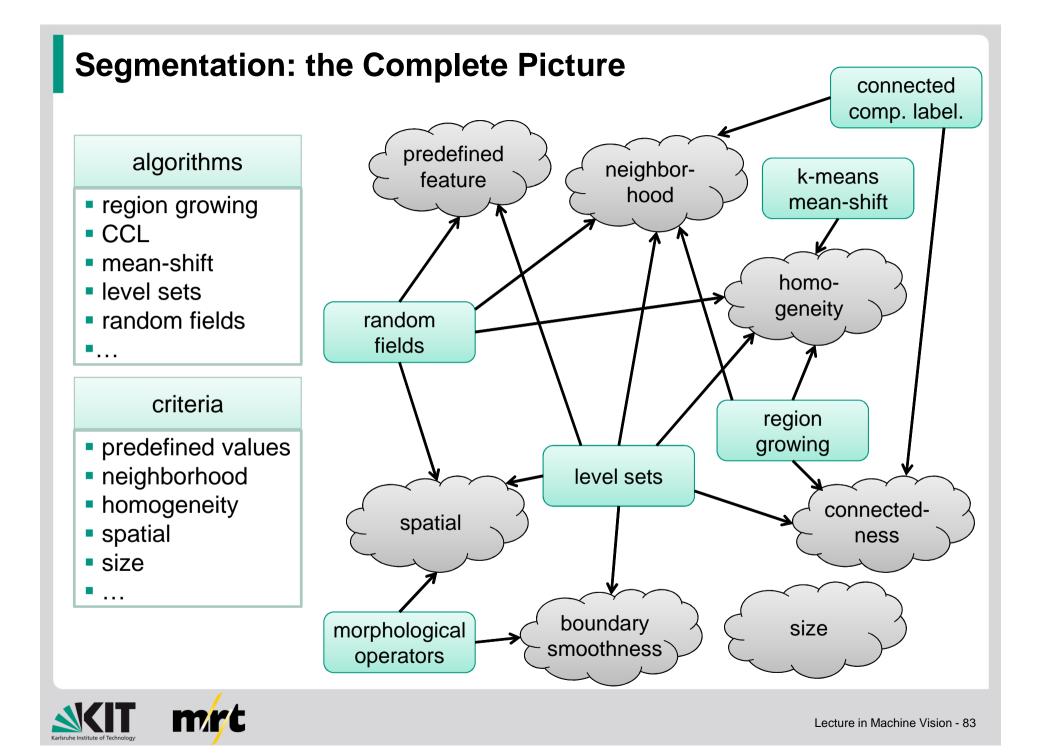


Lecture in Machine Vision - 80

SUMMARY: SEGMENTATION

Lecture in Machine Vision - 81





Segmentation: the Complete Picture

features

- color
- texture features
- depth
- motion
- ...
- similarity measure
- Euclidean dist.
- other metric

• . . .

- which features are salient and discriminative?
 - color
 - texture
 - depth
 - motion
 - ...
- which representation is appropriate?
 - color space
 - various texture features
 - histograms
 - ...
- how can we compare feature vectors?
 - similarity measures

